¿Quién es más visitado?: Sodimac Homecenter Vs. Home DepotLos análisis de movilidad, la inteligencia de localización y la analítica de puntos de interés pueden ayudar a las grandes cadenas para la mejora del hogar a medir el tráfico peatonal y a entender los patrones de conducta de los consumidores en cualquier zona de interés o punto de venta.Miércoles 10 de Noviembre de 2021
Qué beneficios brindan los análisis de movilidad y la inteligencia de localización en las franquicias de ferreterías y mejoras para el hogar?
Aplicando técnicas de geomarketing mediante la minería de data geoespacial, se logra recopilar información valiosa como:
Los líderes utilizan estas técnicas para tomar decisiones más eficientes y concisas que generan una mayor rentabilidad al maximizar ingresos y optimizar costos. La correlación entre la movilidad peatonal, las visitas, las ventas y el éxito de las cadenas ferreteras para la mejora del hogar, ha sido estudiada y probada, por lo que el desarrollo de este tipo de análisis se ha convertido en una prioridad en el proceso de selección de emplazamientos y en el modelado de la expansión. Caso de Estudio: Sodimac Homecenter Vs. The Home Depot Tlalnepantla, Estado de México, México En PREDIK Data-Driven realizamos un estudio detallado de dos franquicias minoristas para la mejora del hogar en el Estado de México: Sodimac Homecenter y The Home Depot, ambas situadas en el municipio de Tlalnepantla. En este caso de estudio analizamos la movilidad y el tráfico peatonal dentro y fuera de ambos establecimientos, con el fin de entender los patrones de comportamiento de los consumidores que visitan ambas franquicias. Este análisis pretende responder a las siguientes preguntas: ¿Cómo se distribuyen las visitas en cada tienda? ![]() Mediante la inteligencia de localización se identifican los puntos de interés y se aplica un heatmap basado en los patrones de movilidad de las visitas, con lo que se logra observar la distribución interna, la dispersión de los consumidores y la distribución de visitas en el interior de ambos establecimientos. ![]() Esto brinda información muy útil a la hora de conceptualizar el diseño de la infraestructura y los planos arquitectónicos internos que conforman cada cadena, con el fin de que los líderes puedan implementar estrategias que mejoren el customer journey de los clientes y se implementen modelos de expansión más eficientes, maximizando la experiencia de compra de los consumidores. ¿Cuál de las tiendas es el más visitada? Distribución porcentual de las visitas registradas en el mes de diciembre del año 2020: ![]() Al analizar la movilidad al interior de ambas tiendas durante el periodo de tiempo establecido, identificamos que el 84% eligió visitar The Home Depot, mientras que el 16% restante prefirió Sodimac Homecenter, lo cual tiene una correlación con la ubicación de las tiendas y la preferencia de los consumidores cuando se trata de elegir productos para la mejora del hogar. ![]() Con esto, también es posible observar la evolución de las visitas a lo largo del tiempo, lo que puede ser muy útil para identificar patrones de comportamiento móvil de los clientes y tendencias del mercado en temporadas de alta y baja afluencia. Identificar la conducta de los consumidores: ¿Qué días de la semana son los más visitados? ![]() Una de las aplicaciones más interesantes del geomarketing es que permite conocer a detalle de día, hora, meses o años los patrones de comportamiento de los consumidores, ofreciendo valiosos conocimientos para diseñar campañas de marketing y estrategias comerciales basados en las power hours de las tiendas. Este análisis es muy útil para conocer cuál es el rendimiento de los clubs en las horas con mayor actividad del día. ![]() ¿Cuál es el patrón de movilidad del tráfico peatonal a los alrededores de ambos establecimientos? Aunque las visitas están relacionadas con el rendimiento de cualquier local comercial, no son el único factor clave para el éxito. Otro aspecto fundamental que debe analizarse es el entorno de los puntos de venta, ya que permite realizar comparativos y estimar el número de visitas, ingresos, movimientos estratégicos y operativos de la competencia. Al recopilar información sobre los clientes potenciales de la competencia, es posible realizar un benchmarking más detallado y generar estrategias que logren acaparar a los clientes de la competencia. ![]() Este análisis del entorno nos proporciona una imagen más general de las zonas aledañas y de los patrones de movilidad de las personas que se mueven los alrededores. Estos datos, combinados con otros factores, otorgan una visión profunda a la hora de predecir los ingresos de cualquier establecimiento comercial. ¿Qué otras percepciones pueden obtenerse analizando la afluencia de visitas en un punto de venta? Entender qué clientes visitan ambas tiendas Al analizar los datos durante un periodo de tiempo determinado en un lugar específico, es posible estimar la distribución porcentual de clientes únicos y compartidos que visitaron ambos establecimientos. ![]() Estas soluciones benefician a cualquier tipo de negocio, un ejemplo de esto es otro caso de estudio que se realizó para comparar dos farmacias enfocadas al comercio minorista en la ciudad de México, los resultados fueron más que interesantes. Lee más sobre este caso: Farmacias: ¿Quién gana en el punto de venta? Perfilamiento de clientes Otro análisis posible es el perfilamiento de los clientes, ya que es posible saber en qué otros lugares (tiendas, restaurantes, centros comerciales, áreas residenciales, entre otros) estuvieron las personas que visitaron un establecimiento. Así, ambas marcas pueden saber cómo es el comportamiento de sus clientes, y saber dónde y cuánto tiempo estuvieron dentro y después de visitar una tienda. ![]() Identificar zonas idóneas para establecer modelos de expansión Con data del Wealth Index Global, recopilada por Facebook, se pueden estimar los niveles socioeconómicos de los habitantes, su edad y su perfil. En paralelo, aplicando técnicas de análisis de datos geoespaciales, se localizan edificios corporativos, zonas residenciales, escuelas, etc.; lo cual, hace posible entender con claridad cómo es el comportamiento de las personas que transitan por un área determinada, entender cómo son, sus gustos, preferencias, nivel socioeconómico y potencial de compra. ![]() ![]() ¿Cuál es el potencial de facturación de mi competidor o de un punto de venta? A través de modelos de machine learning, es posible predecir la facturación de un punto de venta determinado. Con estos modelos, Sodimac Homecenter podría llegar a conocer cuál es el potencial de facturación o visitas de su competidor The Home Depot en una semana, mes, o año específico. También estos modelos sirven para predecir el potencial de un nuevo punto por abrirse. Esto es ideal para complementar los estudios de viabilidad de nuevos puntos de venta en planes de expansión. Todos estos insights son generados al aplicar la inteligencia de localización y los análisis de movilidad, sí le interesa conocerlos más a fondo, realizamos un estudio donde se hace una caracterización de Zona Rosa, en Ciudad de México. ¿Busca soluciones de inteligencia comercial para su empresa?¿Necesita implementar este tipo de análisis para asegurar el éxito de su negocio?¡Contáctenos!¿Tiene alguna duda? Llámenos.
(506) 4001-6423
Más sobre este temaMovilidad en tiendas para mascota: PETCO Vs. PetSmartNoviembre de 2021 Las tiendas para mascota necesitan aplicar técnicas de inteligencia de localización y la analítica de foot traffic para identificar patrones de movilidad de los consumidores, y con ello maximizar sus ventas y generar modelos de expansión más eficientes. ¿Cómo aumentar las visitas en papelerías?: OfficeMax Vs. Office DepotNoviembre de 2021 Conocer la movilidad y entender las zonas o puntos de interés, ayuda a las grandes cadenas proveedoras de suministro de oficina minoristas a medir el tráfico peatonal dentro y fuera de su establecimiento y a entender los patrones de conducta de los consumidores. Análisis de competencia: Home Depot Vs Lowe’s Home ImprovementNoviembre de 2021 Los retailers ya implementan herramientas de Big Data como la inteligencia de localización y la analítica de foot traffic para conocer patrones de movilidad de los consumidores, medir afluencia peatonal en cada tienda, entender el desempeño de sus puntos de venta, y estimar la facturación de la competencia. Geomarketing: Lo que todo retailer debería saberAgosto de 2021 Las empresas de retail ya implementan herramientas de Big Data y analítica de geolocalización para conocer patrones de movilidad de los consumidores, medir afluencia peatonal en cada tienda, entender el desempeño de sus puntos de venta, y estimar la facturación de la competencia.
×
|
|